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1.0 Introduction 

Dengue infection is a mosquito-borne infection caused by 

a virus so-called Dengue virus (DNV) a member of the 

Flavivirus mostly found in tropical and sub-tropical 

regions around the world [1]. The virus is spreads to 

individuals by infected female Aedes genus, specifically 

Aedesaegypti or Aedesalbopictus [2-3]. In recent times, 

dengue infection has been reported in the Caribbean area, 

South America, and Europe [4].  

Annually, at least 40 to 100 million persons are infected 

by DNV, and over half of the world's population at risk 

of infecting by this virus [4]. Infections caused by DNV 

can cause high fever and flu-like symptoms. These 

infections, in some instances, may also advance into a 

more acute stage know as dengue hemorrhagic fever and 

dengue shock syndrome [5-7]. Hence, DNV infections 

constitute a grave threat globally. 

 Out of the seven known nonstructural protein (NS) of 

DNV NS1 to NS5, only NS3 and NS5 have been 

considered so far as drug targets because they are 
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essential to virus growth and demonstrate enzyme 

activity, which is desirable in regards to drug screening 

[8]. 

With all its fatal consequences, yet there are no effective 

drugs against dengue viruses [9-11]. This problem is also 

worsened by the persistent dispersal of these viruses to 

different geographic expanses as foretold more than a 

decade ago [12]. 

The nonexistence of particular medication for the 

treatment of Dengue fever presages great danger to the 

global health being of man, particularly in developing 

countries. The marked anti-dengue potentials of synthetic 

and medicinal plants have made their in silico structural 

modification geared towards the design of potent novel 

drug candidates a sine qua non. This will indeed provide 

an inroad to the development of the much-expected novel 

drugs against this virus. 

In recent times, Computational methodologies have 

advanced as an imperative instrument for any drug 
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B3LYP/631G** basis set of DFT quantum mechanical method was used to 

optimize the molecular geometry of some non-nucleoside inhibitors of dengue 4 

virus. Molecular descriptors were mined from the optimized structure and used 

along with their experimental inhibitory activity (pIC50) as the database for the 

study. Genetic function algorithm and multiple linear regressions were used to build 

a robust quantitative structure-activity relationship model. The statistically 

satisfactory quality of the model as evidenced by its validation parameters: R2 = 

0.971, R2
adj = 0.961, cRp^2 = 0.809 Q2 = 0.944 and R2

pred = 0.627. Thus, the model 

can be used to predict the activity of new chemicals within its applicability domain. 

The Average Broto-Moreau autocorrelation - lag 1 / weighted by mass, Centered 

Broto-Moreau autocorrelation - lag 2 / weighted by Sanderson electronegativities, 

Coefficient sum of the last eigenvector from Barysz matrix / weighted by van der 

Waals volumes, nhigh lowest polarizability weighted BCUTS and Fraction of sp3 

carbons to sp2 carbons are the descriptors that influenced the anti-dengue activity 

of the studied compounds. The information obtained from the model in this work 

can be employed to optimize the anti-dengue activity of the compounds. 
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discovery program, playing a vital part in lead 

optimization from hit identification [13-15].  

Q-SAR (quantitative structure-activity relationship), 

which is an informatics-based instrument predicts the 

activity of a dataset of molecules using regression such as 

MLR. Its models also use predictor variables 

(descriptors) to predict the response which is the 

biological activity (against particular biological target). 

The predictor variables are descriptors which are the 

numerical depiction of physicochemical properties of 

molecules. Q-SAR has been employed extensively to 

estimate biological activities of important molecules. 

In this study, the prominent method, which is called a 

quantitative structure-activity relationship (QSAR) has 

been established and used for predicting the biological 

activity of compounds by employing molecular structures 

and experimental biological activity data. Through this 

method, biological properties can be obtained easily 

without any experimental efforts for the synthesis of 

novel compounds [16]. 

 

2.0 Material and Methods   

2.1 Software 

The computation work in this study was carried out on an 

hp computer system, with the processor properties of 

Intel ® Core i3-5005U CPU Dual @ 2.00 GHz, 8 GB 

(RAM). The software packages used on the computer 

system include Spartan 14 Version (1.1.2) by 

Wavefunction Inc., Material studio software version 

(8.0), Chemdraw Ultra software Version (12.0.2), 

PADELDescriptor Version (2.20), Microsoft Excel 2013 

version, and Drug Theoretics & Cheminformatics (DTC) 

laboratory software (MLRplusValidation1.3 and 

DatasetDIvision 1.2). 

 

2.2 Dataset  

The dataset used was reported literature to possess anti-

dengue activity [17]. Their activity reported as IC50 (µM) 

was converted to IC50 (M) and later to Log 1/IC50 in other 

to moderate the skewness in the data [18]. The result is 

presented in Table 1 as pIC50 with the names of the 

compounds. 

 

Table 1-IUPAC names and anti-dengue activity in logarithm unit (pIC50) for the dataset compounds 
No. Name Exp. 

pIC50 

Pred. 

pIC50 

1 2,2'-([1,1'-Biphenyl]-3,5-diyl)diacetic acid  3.752 3.538 

2* 2,2'-(2'-Chloro-[1,1'-biphenyl]-3,5-diyl)diacetic acid  3.716 3.814 

3 2,2'-(3'-Chloro-[1,1'-biphenyl]-3,5-diyl)diacetic acid 3.850 4.022 

4 2,2'-(4'-Chloro-[1,1'-biphenyl]-3,5-diyl)diacetic acid 4.207 4.237 

5 2,2'-(5-(Furan-2-yl)-1,3-phenylene)diacetic acid 3.675 3.477 

6 2,2'-(5-(Thiophen-2-yl)-1,3-phenylene)diacetic acid 4.823 4.838 

7 2,2'-(5-(5-Chlorothiophen-2-yl)-1,3-phenylene)diacetic acid 4.585 4.132 

8* 2,2'-(5-(5-Methylthiophen-2-yl)-1,3-phenylene)diacetic acid 4.017 2.626 

9 2,2'-(5-(5-Bromothiophen-2-yl)-1,3-phenylene)diacetic acid 4.408 4.639 

10 2,2'-(5-(5-Cyanothiophen-2-yl)-1,3-phenylene)diacetic acid 3.701 4.113 

11 2,2'-(5-(5-(3-Hydroxyprop-1-yn-1-yl)thiophen-2-yl)-1,3 phenylene)diacetic acid 5.769 5.827 

12 2,2'-(5-(5-(4-Hydroxybut-1-yn-1-yl)thiophen-2-yl)-1,3 phenylene)diacetic acid 4.537 

4.687 

13 2-(3-(5-(3-Hydroxyprop-1-yn-1-yl)thiophen-2-yl)-4-methoxyphenyl)acetic acid 5.124 4.964 

14 3-(5-(3-Hydroxyprop-1-yn-1-yl)thiophen-2-yl)-4-methoxybenzoic acid 5.638 5.634 

15* 5-(5-(3-Hydroxyprop-1-yn-1-yl)thiophen-2-yl)-4-methoxy-2-methylbenzoic acid 6.275 4.443 

16 3-(5-(2-Methoxy-5-(1H-tetrazol-5-yl)phenyl)thiophen-2-yl)prop-2-yn-1-ol 5.619 5.826 

17 3-(5-(5-(3-Hydroxyprop-1-yn-1-yl)thiophen-2-yl)-4-methoxy-2-methylphenyl)-1,2,4- oxadiazol-5(4H)-

one 

5.494 

5.514 

18 3-(5-(5-(1H-Imidazol-2-yl)-2-methoxy-4-methylphenyl)thiophen-2-yl)prop-2-yn-1-ol 4.356 4.440 

19*  5-(5-(3-Hydroxyprop-1-yn-1-yl)thiophen-2-yl)-4-methoxy-2-methyl-N-(phenylsulfonyl)benzamide 6.468 6.894 

20 N-((5-(5-(3-hydroxyprop-1-yn-1-yl)thiophen-2-yl)-4-methoxy-2-methylphenyl)sulfonyl)acetamide 5.602 5.471 

21 5-(5-(3-Hydroxyprop-1-yn-1-yl)thiophen-2-yl)-4-methoxy-2-methyl-N- (phenylsulfonyl)benzamide  6.769 6.894 

22 5-(5-(3-Hydroxyprop-1-yn-1-yl)thiophen-2-yl)-2,4-dimethoxy-N-(phenylsulfonyl)benzamide 6.602 6.594 

23* 5-(5-(3-Hydroxyprop-1-yn-1-yl)thiophen-2-yl)-2,4-dimethoxy-N-((3 methoxyphenyl)sulfonyl)benzamide 6.769 5.416 

24 4-Chloro-5-(5-(3-hydroxyprop-1-yn-1-yl)thiophen-2-yl)-2-methoxy-N-((3-
methoxyphenyl)sulfonyl)benzamide 

6.853 
6.646 

25 5-(5-(3-Hydroxyprop-1-yn-1-yl)thiophen-2-yl)-4-methoxy-2-methyl-N-(quinolin-8-ylsulfonyl)benzamide 7.638 7.509 

 

2.2.1 Molecular structure optimization and descriptor 

calculation 

Molecular structures of the compounds were properly 

drawn using Chem-Draw Ultra software V12.0.2 and 

subsequently exported to Spartan for optimization, with 

the aim of computing their equilibrium geometries[19], 

DFT B3LYP/6-31G** quantum mechanical technique 

was used i.e. Becke's (3) exchange functional (B3) [20] 

combined with Lee-Yang-Parr correlation functional 

(LYP) [21] by means of 6-31G** basis set [22]. Many 

have used this method. Optimized molecules from 

Spartan program were saved as SDF format, and then 

exported to PaDEL descriptors software. This software 

computes diverse molecular descriptors [23, 19]. 

 

2.2.2 Dataset pretreatment  

In this, all descriptor columns having constant numerical 

values were eliminated. In a pair of descriptors having a 

correlation coefficient greater than 0.8, one was discarded 

whose correlation coefficient with the activity value is 
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less significant. The pretreatment process was carried out 

to reduce redundancy and the selection of best descriptors 

[18]. 

2.2.2 Dataset division  

Kennard-Stone algorithm (KS) available in 

DatasetDIvision 1.2 [24] was used to divide the dataset 

into training and test set. KS has been reported to produce 

excellent data division [25].  

 

2.3 Selection of optimal descriptor and multi-co-linearity 

analysis 

This encompasses the selection of descriptors blend 

between remaining descriptors that can predict the 

dependence between descriptors and the dependent 

variable. The genetic algorithm of multiple linear 

regressions (GA-MLR) methods was used in this study. 

This method has been used to examine the 

correspondence between biological activity and 

physicochemical properties of a set of bioactive 

compounds. It describes how a Y-variable relates to two 

or more X-variables. Material Studio version 8.10 was 

used to generate equation (model) in this research, which 

is expressed as:  

 

𝑌𝑖= 𝛽0 + 𝛽1 𝑥𝑖1  + 𝛽2𝑥𝑖2+. . . + 𝛽𝑝𝑥𝑖𝑝 +  ℰ   (1)                                                                                                           

  

Where 𝑌𝑖, 𝑥𝑖, 𝛽𝑜, 𝛽𝑝,  and ℰ   are dependent variables, 

explanatory variable, y-intercept constant term, slope 

coefficient for each explanatory variable, and model error 

term called residual respectively [26]. 

This method has the importance of generating more than 

one combination of descriptors that can be used to build 

a model. It provides the user the control over the equation 

length and utilizes a lack-of-fit (LOF) function to hinder 

over-fitting and moderate redundancy in a model [27]. 

The validity of the model evaluated by statistical 

methods. 

Also, the presence of a high degree of correlation among 

the descriptors that make up the model selected by GFA 

was evaluated with the variance inflation factor (V.I.F) 

value for each descriptor represented by equation 2. 

 

(𝑉. 𝐼. 𝐹)𝑖  = (𝑅𝑖𝑗
2 )

−1
                                    (2) 

 

where R2
ij in equation 2 represents the correlation 

coefficient of the multiple regression between the  

 

descriptor i and the remaining j descriptors within the 

model [28]. 

 

2.3.1 Q-SAR model and authentication 

The descriptors that constitute the best blend selected by 

the GFA were copied into a separate spreadsheet for 

individual training and test sets. Then, training and test 

set data matrices were imported into the 

MLRplusValidation1.3 software for various internal and 

external statistical validation as recommended [24]. 

2.3.2 Models domain of applicability 

The level of extrapolation approach based on compounds 

leverage (hi) values and standardized residual (SDR) 

obtained from the model was used to define the 

applicability domain (AD) of the Q-SAR model [29]. 

Compounds hi are obtained as the diagonal component of 

hat matrix H: 

     

𝑯 = 𝒎(𝒎𝑻𝒎)
−𝟏

. 𝒎𝑻  

                                                                                             (3) 

where m is the descriptor matrix and mT is the transpose 

of m, and SDR was obtained using equation 4: 

 

𝑆𝐷𝑅 =
ŷ− y

√
∑ (ŷ− y)2n

i=1
n

                         (4) 

 

Where y and ŷ are observed and predicted activity value 

for either of the dataset respectively and n is the number 

of compounds in the set involved. Model AD was well-

defined by the borderline 0 < hi < h* and -3 < SDR < 3. 

Where h* is the cautionary leverage h* obtained using 

equation 5: 

 

ℎ∗ =
3(𝑞+1)

𝑛
                    (5) 

 

Where q is the number of descriptors in the model and n 

is the number of compounds that made up the training set. 

A quick visual assessment of the model AD is a plot of 

SDR versus hi known as Williams plot was made [30].
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Figure 1. Schematic workflow of the study 

 

 

3.0 Result and discussion 
 

3.1 Dataset structure 

About 20 training set and 5 test set compounds were 

reported by the dataset division technique used in the 

study. Figure 1 depicts the workflow for the whole 

process involved in this work. The test compounds are 

marked with the letter asterisks superscript in Table 1. 

Descriptive statistics executed on the two sets revealed 

that the test set maximum was less than the training set 

maximum; the test set minimum was greater than the 

training set minimum as shown in Table 2. Besides, other 

parameters reported in the table were similar for both 

sets. This indicated that the data division algorithm 

method employed in this study successfully obtain the 

test set data within the activity range of the training set. 

Dissimilarity analysis depicted in Figure 2 revealed that 

the test set descriptor spaces were in the range of training 

set descriptors space.

 

Table 2. Training and test set data descriptive statistics

 

 

 

 

 

 

 

 

 

 

 

 

Parameters Training Test 

Mean 5.150 

 

5.449 

 

Standard Error 0.260 

 

0.652 

 

Sample Variance 1.356 

 

2.129 

 

Range 3.962 

 

3.052 

 

Minimum 3.675 

 

3.716 

 

Maximum 7.638 

 

6.769 

 

Molecular Structure 

Non-Nucleoside Inhibitors of 

Dengue Viral RNA-Dependent 

RNA polymerase (bis acid, 

mono-acid and acid bioisoster, 

and acyl sulfonamide analogs) 

 

B3LYP/631G** basis set of 

DFT quantum mechanical 

method 

(Energy minimization of 

structures) 

Q-SAR model generated from Padel 

descriptor using GFA-MLR in Material 

Studio version 8 

𝑌𝑖 = 𝛽0 + 𝛽1 𝑥𝑖1  + 𝛽2𝑥𝑖2+. . . + 𝛽𝑝𝑥𝑖𝑝 +  ℰ 

 

Internal and external model validation 
: R2 = 0.971, R2

adj = 0.961, cRp^2 = 0.809 Q2 = 

0.944 and R2
pred = 0.627. 

(Reliable, stable and highly predictive)  

 

 

 

 

 

Descriptors 

calculation 

(PadelDescrptor 

Software) 
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Figure 2. Diversity analysis of dataset compounds 

 

Y = 0.037743709 * AATS1m   + 0.493680190 * 

ATSC2e - 3.185535703 * VE1_Dzv - 5.253142608 * 

BCUTp-1l   - 16.257556067 * HybRatio + 

25.631233244                                                        (6)                                                                                 

The Q-SAR model was built from 20 training set of 

compounds and 5 test set for external validation and it 

contained 5 descriptors. The model (Eq. 6) was used to 

predict the activity values (pIC50) for both training and 

test presented in Table 1. The plot of SDR against the 

experimental activity value (Figure 3) showed that the 

residuals were evenly distributed around the line SDR = 

0, indicating the absence of systematic error in the model 

[27] [31], so this method is statistically acceptable. 

 

 
 

Figure 3. Distribution of residuals to the experimental 

pIC50 values for train and test set 

 

 

The graph of predicted versus experimental activity 

(pIC50) of the model (Figure 4) indicated that an 

undeviating relationship existed between the two 

variables and the model had good internal prediction 

ability. The multi-co-linearity investigation result 

revealed that the VIF values for descriptors in the model 

were in the range of 1-5 as shown in Table 3, specifying 

the model was satisfactory and void of the multi-co-

linearity owing to coincidental correlation [28]. The 

correlation matrix for selected descriptors also is reported 

in the Table 3. As see, there is absence of dependency 

between the descriptors. 

 

 
 

Figure 4. Predicted versus experimental activity value 

 

Table 3. Descriptors correlation matrix and variance 

inflation factor 
  AATS1m ATSC2e VE1_Dzv BCUTp-

1l 

HybRatio VIF 

AATS1m 1     1.201 

ATSC2e -0.249 1    2.385 

VE1_Dzv -0.188 0.359 1   1.899 

BCUTp-

1l 

-0.360 0.707 0.664 1  4.929 

HybRatio 0.081 -0.217 -0.502 -0.599 1 1.892 
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3.3 Model validation parameters 

Comprehensive validation statistical parameters 

computed for the model as well as the recommended 

threshold values are presented in Table 4. The result 

revealed that the values for R2; R2
adj; Q2; R2pred; and r2 

are more than 0.6. Hence, the model had a good internal 

and external predictive capability and it is not obtained 

by coincidental correlation [24]. The model also agreed 

with all Golbraikh and Tropsha criteria for a predictive 

model [32].

 

 

Table 4. Model Validation parameters and their statistical satisfactory threshold values 
Parameter Formula Threshold value  Model score Remark 

Internal  validation  

𝐑𝟐 [∑ {(Y − Y̅) × (Ŷ − Ŷ̅)}]
2

∑(Y − Ŷ)
2

× ∑(Ŷ − Ŷ̅)
2  

R2 > 0.6 0.9714 passed 

𝐑𝐚𝐝𝐣
𝟐  (N − 1) ×  R2 −  p

N − 1 − p
 

Radj
2 > 0.6 0.9612 passed 

𝐐𝟐 
1 −  

∑(Y − Ŷloo)
2

∑(Y − Y̅)2
 

Q2 > 0.6 0.9439 

 

Passed 

Random model  
c𝐑𝐩

𝟐  
R2 ×  (1 − √|R2 − R̅r

2| ) 
cRp

2 > 0.6 0.8097 

 

Passed 

External validation  

𝐑𝐏𝐫𝐞𝐝
𝟐  

1 − 
∑(Yext − Ŷext)

2

∑(Yext − Y̅)2
 

Rpred
2 > 0.6 0.6269 Passed 

𝐫𝟐 Coefficient  of determination for the plot of 

predicted versus observed for test set 
r2 > 0.6 0.6269 Passed 

𝐫𝟎
𝟐 𝐫𝟐 at zero intercept   0.3896 

 

Passed 

𝐫𝟎
′𝟐 r2 for the plot of observed versus predicted 

activity for the test set at zero intercept 

 0.6301 Passed 

|𝐫𝟎
𝟐 − 𝐫𝟎

′𝟐|  |r0
2 − r0

′2| < 0.3 0.2368 Passed 

𝒌 The slope of the plot of predicted versus 

observed activity for test set at zero intercept 
0.85 < k < 1.15 1.1341 Passed 

𝐫𝟐 − 𝐫𝟎
𝟐

𝐫𝟐
 

 r2 − r0
2

r2
< 0.1 

0.3785 Passed 

𝐤′ Slope of the plot of observed versus 

predicted activity at zero intercept 
0.85 < k′ < 1.15 0.8526 Passed 

𝐫𝟐 − 𝐫𝟎
′𝟐

𝐫𝟐
 

 r2 − r0
′2

r2
< 0.1 

0.0009 Passed 

Y is the observed activity value for the training set, Y̅, the average of the observed activity for training set Ŷ, Predicted activity for the training 

set, Ŷloo leave one out cross-validation predicted activity for training, Yext observed activity for the test set, and Ŷext predicted activity for the test 

set 

 

3.4 Model applicability domain 

The cautionary leverage for the model h* was 0.90 as 

obtained from equation 3. More so, the AD of the model 

is defined by a square area bounded by 0< h < 0.9 and -3 

< SDR < 3 as shown graphically by the models William’s 

plot (Figure 5). It could be seen that all the dataset 

compounds were within the boundary limit of the AD of 

the model. Thus, the dataset does not contain any outliers. 
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Figure 5. William’s plot for the model

 

3.5 Interpretation of descriptors  

Calculated descriptors for each molecule in the dataset 

are contained in equation 6.  Average Broto-Moreau 

autocorrelation - lag 1 / weighted by mass (AATS1m) is 

the first descriptor in the model and is positively 

correlated to the activity of the studied compounds, this 

entails an increase in its value could improve the 

biological activity of the compounds. Centered Broto-

Moreau autocorrelation - lag 2 / weighted by Sanderson 

electronegativities (ATSC2e) it is positively correlated to 

the activity of studied compounds, which also signifies 

improvement in biological activity with an increase in the 

value of such descriptor. Also, coefficient sum of the last 

eigenvector from Barysz matrix / weighted by van der 

Waals volumes (VE1_Dzv), nhigh lowest polarizability 

weighted BCUTS (BCUTp-1l) and Fraction of sp3 

carbons to sp2 carbons (HybRatio) are the descriptors 

contained in the model which correlate negatively with 

the biological activity (pIC50) which signifies increase in 

biological activity with decrease in the value of the 

descriptors.  

4.0 Conclusion 

This work establishes the quantitative structure-activity 

relationship (Q-SAR) between some non-nucleoside 

inhibitors and their pIC50 against DNV-4 NS5. The result 

revealed AATS1m; ATSC2e; VE1_Dzv; BCUTp-1l and 

HybRatio molecular descriptors to influence the anti-

dengue activity of the studied compounds. These 

descriptors showed that increasing the electronegativity 

of the molecules on the addition of electronegative 

elements in the molecular system and the decrease in the 

number of  sp3 carbons to sp2 carbon could improve the 

anti-dengue activity of the studied compounds. The 

model produced in the study also had a good performance 

in terms of its validation parameters and can be used to 

screen compounds for anti-dengue activity.  
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